Cryptographically Significant Boolean Functions: Construction and Analysis in Terms of Algebraic Immunity

نویسندگان

  • Deepak Kumar Dalai
  • Kishan Chand Gupta
  • Subhamoy Maitra
چکیده

Algebraic attack has recently become an important tool in cryptanalysing different stream and block cipher systems. A Boolean function, when used in some cryptosystem, should be designed properly to resist this kind of attack. The cryptographic property of a Boolean function, that resists algebraic attack, is known as Algebraic Immunity (AI). So far, the attempt in designing Boolean functions with required algebraic immunity was only ad-hoc, i.e., the functions were designed keeping in mind the other cryptographic criteria, and then it has been checked whether it can provide good algebraic immunity too. For the first time, in this paper, we present a construction method to generate Boolean functions on n variables with highest possible algebraic immunity d 2 e. Such a function can be used in conjunction with (using direct sum) functions having other cryptographic properties. In a different direction we identify that functions, having low degree subfunctions, are weak in terms of algebraic immunity and analyse some existing constructions from this viewpoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight bounds between algebraic immunity and nonlinearities of high orders

Among cryptographically significant characteristics of Boolean functions used in symmetric ciphers the algebraic immunity and the nonlinearities of high orders play the important role. Some bounds on the nonlinearities of high orders of Boolean functions via its algebraic immunity were obtained in recent papers. In this paper we improve these results and obtain new tight bounds. We prove new un...

متن کامل

Balanced Boolean Functions with (Almost) Optimal Algebraic Immunity and Very High Nonlinearity

In this paper, we present a class of 2k-variable balanced Boolean functions and a class of 2k-variable 1-resilient Boolean functions for an integer k ≥ 2, which both have the maximal algebraic degree and very high nonlinearity. Based on a newly proposed conjecture by Tu and Deng, it is shown that the proposed balanced Boolean functions have optimal algebraic immunity and the 1-resilient Boolean...

متن کامل

On Cryptographic Properties of Random Boolean Functions

Boolean functions used in cryptographic applications have to satisfy various cryptographic criteria. Although the choice of the criteria depends on the cryptosystem in which they are used, there are some properties (balancedness, nonlinearity, high algebraic degree, correlation immunity, propagation criteria) which a cryptographically strong Boolean function ought to have. We study the above me...

متن کامل

Construction and Analysis of Boolean Functions of 2t+1 Variables with Maximum Algebraic Immunity

In this paper, we study the construction of (2t+ 1)-variable Boolean functions with maximum algebraic immunity, and we also analyze some other cryptographic properties of this kind of functions, such as nonlinearity, resilience. We first identify several classes of this kind of functions. Further, some necessary conditions of this kind of functions which also have higher nonlinearity are obtain...

متن کامل

New Construction of Even-variable Rotation Symmetric Boolean Functions with Optimum Algebraic Immunity

The rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used as components of different cryptosystems. In order to resist algebraic attacks, Boolean functions should have high algebraic immunity. This paper studies the construction of even-variable rotation symmetric Boolean functions with optimum algebraic immunity. We construct ( / 4 3) n    ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005